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The Scientific and Technical Advisory Committee (STAC) provides scientific and technical

guidance to th
e Chesapeake Bay Program o
n measures to restore and protect

th
e Chesapeake

Bay. A
s

a
n advisory committee, STAC reports periodically to th
e

Implementation Committee

and annually to th
e

Executive Council. Since

it
's creation in December 1984, STAC

h
a

s

worked

to enhance scientific communication and outreach throughout

th
e

Chesapeake Bay watershed

and beyond. STAC provides scientific and technical advice in various ways, including ( 1
)

technical reports and papers, ( 2
)

discussion groups, ( 3
)

assistance in organizing merit reviews o
f

CBP programs and projects, ( 4
)

technical conferences and workshops, and ( 5
)

service b
y STAC

members o
n CBP subcommittees and workgroups. In addition, STAC has th
e

mechanisms in

place that will allow STAC to hold meetings, workshops, and reviews in rapid response to CBP

subcommittee and workgroup requests

f
o

r

scientific and technical input. This will allow STAC

to provide the CBP subcommittees and workgroups with information and support needed a
s

specific issues arise while working towards meeting

th
e

goals outlined in th
e

Chesapeake 2000

agreement. STAC also acts proactively to bring
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e most recent scientific information to th
e Bay

Program and
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A
.

Summary

The United States Environmental Protection Agency (EPA) requested guidance from

th
e

Scientific and Technical Advisory Committee (STAC) o
f

the Chesapeake Bay Program

regarding
th

e
bioavailability o

f

organic nitrogen (ON) released through wastewater treatment

plant effluents (effluent organic nitrogen o
r

EON) and

th
e

appropriateness o
f

a proposed assay

f
o

r

assessing
it
s bioavailability. According to Virginia law, dischargers can argue cases before a

nutrient control board to increase their discharge allowances o
r

caps based o
n

their assessment o
f

EON bioavailability. A facility in Virginia employed a bioassay similar to a biochemical oxygen

demand ( BOD) assay in a
n

attempt to demonstrate that a large fraction o
f

their EON was

biologically unavailable. In th
e

short term, EPA requested guidance

o
n
:

1
)

whether EON is

bioavailable in th
e

proximate and ultimate receiving waters, and 2
)

whether

th
e

assay employed

b
y

th
e

Virginia facility is appropriate f
o

r

assessing EON bioavailability. In th
e

longer term, th
e

EPA has sought guidance o
n developing appropriate assays o
f EON bioavailability.

T
o address this request, STAC formed a
n

a
d hoc committee o
f

experts, including wastewater

engineers, biogeochemists, and estuarine ecologists, who have prepared this document. This

team has found that:

• Many components o
f

dissolved organic N (DON)

a
re indeed bioavailable to

microorganisms (including phytoplankton, cyanobacteria, and bacteria) living in estuaries

either directly o
r

after physical, chemical, and biologically- mediated reactions in th
e

receiving waters and during transport along a
n estuarine gradient.

• The assay employed b
y the discharger

fo
r

assessing bioavailability o
f EON is not a
n

appropriate test o
f

bioavailability in th
e

proximate and ultimate receiving waters. There

is likely to b
e a refractory component o
f

EON,

b
u
t

th
e

proposed bioassay would

n
o
t

accurately determine

th
e

fraction o
f

bioavailable EON. W
e

lack

th
e

scientific

information to make such a
n assessment a
t

this time using any “standard” bioassay

technique. We also lack some o
f

th
e

necessary information o
n both the composition o
f

EON, variations in EON bioavailability from different upstream treatment process

configurations, and

th
e

transformations it may undergo a
s

it moves from freshwater,

through

th
e

estuarine gradient, and into

th
e

ocean.

• A number o
f

important physical, chemical, and biological factors must b
e considered in

th
e

development o
f

appropriate bioassays.

This document summarizes

th
e

scientific background information that

le
d

to these

conclusions, reviews

th
e

reasons

th
e

proposed bioassay is considered inappropriate, outlines

th
e

factors that need to b
e

considered in developing appropriate bioassays, and identifies gaps in our

knowledge currently impeding

th
e

development o
f

appropriate bioassays.

B
.

Background

Nitrogen ( N
)

in wastewater treatment plant effluent includes inorganic and organic forms.

Coupled nitrification/ denitrification systems (

th
e

most common systems) can remove more than

95% o
f

dissolved inorganic N (DIN) (Grady e
t

a
l.

1999); therefore, a substantial fraction o
f

th
e

residual N in wastewater effluents from biological N removal facilities may b
e organic. The

conventional coupled nitrification/ denitrification systems have

th
e

potential to remove total N
down to 8 m

g

L
- 1

and, in selected cases, down to 5 m
g

L
- 1

routinely (Grady e
t

a
l. 1999). Recent

studies have shown that the organic N (ON) remaining in the effluents o
f

biological nutrient

removal (BNR) processes, associated with

th
e main wastewater stream, is typically about 1 m
g



L
- 1

a
s N (Murthy e
t

a
l. 2006). Newer and more expensive technologies must b
e employed to

achieve total N levels o
f

3 to 4 m
g

L
- 1

o
r

lower ( e
.

g
.
,

Fleishcher e
t

a
l. 2005) -

th
e

anticipated

regulatory level

fo
r

wastewater treatment plants in the Chesapeake Bay watershed (draft Virginia

regulations).

Currently there is a growing interest in using novel N removal technologies, such a
s

nitritation/ denitrification o
r

nitritation/ anaerobic ammonia oxidation (anammox), to remove

reduced organic and inorganic N from reject water streams generated b
y

biosolid stabilization

processes and recycled to the main wastewater stream in treatment plants, because this recycling

can increase th
e

N mass load o
n

th
e

mainstream process b
y

2
5

to 40% (Grady e
t

a
l.

in press).

This is believed to b
e a cost- effective way to achieve a total effluent N concentration o
f

3 m
g

L
-

1
;

however,

th
e

impact o
f

these novel N removal strategies o
n

th
e EON fraction is unknown

because they a
re not y
e

t

widely implemented. Nevertheless, implementation b
y

two major

wastewater treatment contributors in th
e Chesapeake Bay region is possible. It is reasonable to

expect that different treatment technologies will discharge different amounts and types o
f

residual EON that will b
e released to th
e

Chesapeake Bay watershed.

Reducing total N in effluents to under 3 m
g

L
- 1

is expensive. The regulated community is

unsure whether reduction beyond that currently realized using conventional methods provides

substantial environmental benefits relative to the costs incurred. A significant portion could b
e

ON inert to th
e

biological processing currently employed and that

th
e

regulated community

contends is biologically refractory in th
e

environment based o
n

th
e

bioassay technique

employed. Nevertheless,

th
e

bioavailability o
f ON in wastewater treatment plant effluents has

n
o
t

been widely assessed, nor has

it
s impact o
n

th
e

Chesapeake Bay ecosystem been adequately

evaluated,

fo
r

a number o
f

reasons.

The origin and composition o
f

EON is largely unknown, but is thought to b
e comprised

largely o
f

amides (Dignac e
t

a
l. 2000a and

b
)
.

It is also possible that a significant EON fraction

is derived from metabolic products generated b
y

th
e

microbes in th
e

wastewater treatment

process itself (Parkin and McCarty 1987a and

b
)
.

I
t

is likely that

th
e

various types o
f

wastewater

treatment processes will impact EON differently; therefore, it may b
e necessary to identify

th
e

composition o
f EON generated b
y

each type o
f

process. Finally, ON availability has

n
o
t

been

widely examined in freshwater systems because phosphorus (and

n
o
t

N
)

is more commonly

thought to b
e

th
e

limiting nutrient in “ fresh” ( i. e
.

non- saline) receiving waters. In contrast, N is

generally limiting in marine and estuarine systems. Because DON can b
e a large fraction o
f

th
e

total N pool, it
s

availability to microbes has been more widely assessed in estuarine and marine

waters (see recent reviews o
n

bioavailability o
f

DON b
y

Antia e
t

a
l. 1991, Bronk 2002, Berman

and Bronk 2003, Bronk and Flynn 2006, Bronk e
t

a
l. 2006), although n
o study has focused

specifically o
n EON. In contrast, our knowledge o
f DON bioavailability in freshwaters,

including rivers and wastewaters, is still in it
s infancy (deBruyn and Rasmussen 2002, Pellerin e
t

a
l. 2006). The lability o
f

natural dissolved organic matter (DOM) varies across aquatic

ecosystem types such that it appears to b
e more labile in lakes and marine systems and least

labile in river systems (

d
e
l

Giorgio and Davis 2003).

Due to th
e

huge economic impact o
f

reducing total effluent N to under 3 m
g

L
- 1

b
y

point-

source dischargers, there is a broad interest in a robust method fo
r

differentiating bioavailable

from recalcitrant EON. This method must b
e applicable not only to th
e

proximate receiving

waters (that may b
e freshwater)

b
u
t

also to estuarine systems, and sensitive to changing

environmental conditions along

th
e

length o
f

th
e

estuarine gradient. Regulatory agencies

a
re

currently drafting legislation that will allow dischargers to apply appropriate methods to



ascertain

th
e

bioavailability o
f EON in their waste streams, and based o
n

th
e outcomes o
f

these

assays, modify their discharge allowances. Consequently, two major issues must b
e resolved: 1
)

quantifying the percentage o
f EON (derived from waste streams) that is bioavailable along a
n

estuarine gradient (including changes in salinity and ecosystem structure), and 2
)

establishing a

standard method to distinguish between bioavailable and recalcitrant EON that is representative

o
f

environmental and ecological conditions in th
e

receiving waters (both proximate and

“downstream”). T
o

b
e

scientifically valid, feasible, and protective o
f

th
e

Chesapeake Bay

environment, this method must satisfy: 1
)

marine, estuarine, and freshwater ecologists, 2
)

Chesapeake Bay Program modelers, and 3
)

BNR experts.

C
.

Objectives

The objectives before th
e

STAC team were:

• T
o assess

th
e

actual bioavailability o
f

components o
f

EON to microbes in th
e

environment,

• T
o assess

th
e

suitability o
f

th
e

method used b
y

a Virginia discharger to assess

“bioavailability” o
f EON to microbes, and

• T
o determine what concentrations o
f EON result in impairments to receiving streams and

their downstream estuaries ( this requires developing appropriate methods and defining

th
e

physical, chemical, and biological conditions under which

th
e

methods must b
e

implemented to b
e representative o
f

th
e

environment).

The team addressed the first two objectives but not

th
e

third because o
f

knowledge gaps

identified below.

D
.

Knowledge Gaps

1
.

Estuarine environments

Salt influences

th
e

behavior, conformation, and reactivity o
f DOM a
s

it moves through

estuaries (Baalousha e
t

a
l. 2006). Light (photochemistry) can also alter

it
s bioavailability.

Biologically recalcitrant DOM can b
e converted into bioavailable forms

v
ia photochemical

reactions and subsequently stimulate N
-

limited microbial food webs (Vähätalo and Järvinen

2007). Additionally, nitrite and ammonium, to highly bioavailable inorganic N compounds, can

b
e released from DOM through photochemical reactions (Kieber e
t

a
l. 1999 and Koopmans and

Bronk 2002). A
s

a
n added complication,

th
e

effects o
f

light and salt o
n

th
e

reactivity o
f DOM

can b
e

interactive (Minor e
t

a
l. 2006). Finally, chlorinated EON

c
a
n

generate highly toxic

compounds and

th
e

impact o
f

introducing those products into receiving streams is n
o
t

well

understood (Pehlivanoglu- Mantas and Sedlak 2006).

There

a
re substantial differences in th
e

cycling o
f

nitrogen ( N
)

and phosphorous ( P
)

along

th
e

length o
f

a
n estuary. While freshwater end-members tend toward phosphorous ( P
)

limitation,

marine end-members tend toward N limitation ( e
.

g
.
,

Doering e
t

a
l. 1995, Fisher e
t

a
l. 1999).

Consequently there is substantial downstream transport o
f

N relative to P
.

Because

th
e

Chesapeake Bay, other estuarine systems, and

th
e

marine environment

a
re more often N
-

limited

(Boynton e
t

a
l.

1995, Howarth e
t

a
l.

1996, Kemp e
t

a
l.

2005), this N is delivered to waters where

N

c
a
n

b
e growth-limiting and where microbial populations (including algae)

a
re adapted to using

a broad spectrum o
f

N compounds reside (Paerl e
t

a
l. 1995, 2004).

Very limited work has been done to assess

th
e

bioavailability o
f EON in freshwater systems

(deBruyn and Rasmussen 2002). In marine and estuarine systems,

th
e

composition o
f DOM

affects bacterial growth and systems

a
re highly variable (Hopkinson e
t

a
l. 1998). The variability



o
f

wastewater DOM composition relative to th
e growth requirements o
f

“ assay” microbes is n
o
t

well understood. Past studies have found that anthropogenically- derived ON is more

bioavailable than forest-derived ON (Seitzinger e
t

a
l. 2002, Wiegner e
t

a
l. 2006). Finally,

bacteria
a
re

n
o
t

th
e

only microbes that

u
s
e

ON; estuarine and marine phytoplankton can also use

ON a
s a source o
f N (Mulholland e
t

a
l. 2002a and 2003, Berman and Bronk 2003, Lewitus

2006). We
a
re still learning

th
e

extent o
f

these capabilities in natural systems.

2
.

Composition o
f

EON
The composition o

f
EON was recently reviewed b

y

Pehlivanoglu- Mantas and Sedlak

(2006). In general, only a small fraction o
f

DON (and DOM) in aquatic systems

h
a

s

been

characterized ( e
.

g
.
,

Benner 2002, Bronk 2002, Carlson 2002). The characterizable fraction o
f

DON includes: proteins, free and combined amino acids, low molecular weight (LMW) aliphatic

amines, and urea. All o
f

these compounds are found in wastewater and

a
ll transformed

differently during wastewater treatment. Other identifiable N
-

containing compounds detected in

EON include chelating agents, pharmaceuticals, and soluble microbial products (SMPs)

produced during biological treatment (Pehlivanoglu- Mantas and Sedlak 2006). According to

these authors, only about 10% o
f

th
e DON in effluents is identifiable. Included in th
e

complex

group o
f

unidentifiable compounds are humic substances, which can b
e a source o
f N to

estuarine algae (See e
t

a
l. 2006) and can release N during photochemical reactions (Bushaw e
t

a
l.

1996, Kieber e
t

a
l. 1999, Vähätalo and Järvinen 2007). Functionally, DON can b
e divided into

th
e

high molecular weight (HMW) and low molecular weight (LMW) fractions. LMW DON < 2

k
D accounts

f
o
r

about half o
f

secondary treated wastewater effluent DON (Pehlivanoglu- Mantas

and Sedlak 2006). These molecular weight fractions likely vary in their reactivity and

bioavailability (Amon and Benner 1996). New analytical methods and instrumentation

a
re

needed to identify

th
e

composition o
f

EON more completely.

3
.

Proposed method

f
o
r

assessing “bioavailability” o
f

EON to microbes

There is concern about

th
e

suitability o
f

th
e

method proposed b
y

th
e

Virginia facility

f
o
r

assessing “bioavailability” o
f

EON. The method uses a 140- day bioassay conducted a
t

20oC

under dark, aerobic conditions. Dissolved/ soluble total Kjeldahl N (TKN) is measured before and

after incubation relative to total N in th
e

effluent to assess

th
e

“bioavailability” o
f

DON.
Another endpoint o

f

the assay is the conversion o
f ON to DIN in th
e

bottle. The 140-day assay

is based o
n

th
e

length o
f

time it takes f
o
r

effluent from th
e

plant to reach th
e

Chesapeake Bay

and Atlantic Ocean. These methods

a
re

n
o
t

representative o
f

th
e

receiving waters

f
o
r

th
e

following reasons: 1
)

assays

a
re conducted in th
e

dark, 2
)

assays

a
re done without

phytoplankton, 3
)

length o
f

th
e

assays relative to endpoints measured is inappropriate, and 4
)

salinity effects

a
re

n
o
t

considered.

E
.

Issues to b
e considered in developing appropriate bioassays

The STAC team agrees that there

a
re currently n
o appropriate bioassays to accurately

assess

th
e

bioavailability o
f

EON in receiving waters through

th
e

range o
f

environmental

conditions it travels e
n

route it
s ultimate destination, the ocean. The team suggests five criteria

that should b
e

satisfied in any bioassay developed to assess bioavailability and discharge

allowances

f
o
r

EON.

1
.

Light



Photochemical reactions affect

th
e

lability o
f

organic material along estuarine gradients

(Bushaw e
t

a
l. 1996, Minor e
t

a
l. 2006) and readily convert “ recalcitrant” compounds into

reactive material. Photochemical reactions can release biologically available N from biologically

non-reactive DON (Vähätalo and Zepp 2005) o
r

may indirectly affect bacterial growth

efficiency, bacterial nutrient demand, and bacterial biomass and respiration (McCallister e
t

a
l.

2005). Additionally, photochemical reactions can convert DOM to inorganic nutrients such a
s

nitrite and ammonium (Kieber e
t

a
l. 1999; Koopmans and Bronk 2002).

2
.

Algae

Dark bioassays d
o

n
o
t

allow consideration o
f

th
e

role o
f

algae in DON uptake. Algal uptake

o
f

DON and components o
f

th
e DON pool, such a
s

urea and amino acids, can b
e

significant in

aquatic environments (Bronk 2002; Mulholland e
t

a
l.

2002a, 2003; Berman and Bronk 2003,

Bronk e
t

a
l. 2006). In addition, a variety o
f

other identifiable N
-

containing organic compounds

can b
e used a
s N sources b
y

algae ( e
.

g
.
,

dipeptides –Mulholland and Lee submitted; cyanate –

Palenik e
t

a
l. 2003). Further, humic-bound N can also b
e available to algae (See e
t

a
l. 2006) and

bacterial reactions can degrade other ON compounds into those that can b
e readily used b
y

algae

( e
.

g
.

Berg and Jørgensen 2006). In addition to direct uptake o
f

specific DON compounds,

microbes (including algae) can render HMW DON into LMW and usable DON through a variety

o
f

extracellular mechanisms (Palenik and Morel 1990; Pantoja and Lee 1994, 1999; Pantoja e
t

a
l.

1997; Mulholland e
t

a
l. 1998, 2002a, 2003; Berg e
t

a
l. 2002; Stoecker and Gustafson 2003).

Bulk DON uptake b
y microorganisms

h
a
s

been examined using a bioassay approach (Berg e
t

a
l.

2003; Stepanauskas e
t

a
l. 1999a, b
;

Wiegner e
t

a
l. 2006) a
s

well a
s

b
y

synthesizing 15N-labeled

DON (Bronk and Glibert 1993).

3
.

Duration o
f

bioassays

The 140-day bioassay period may merely achieve steady state rather than elicit a

n
e
t

effect.

Material flow between particulate and dissolved pools includes uptake and production o
f

both

ON and DIN. Bacteria

a
re fully capable o
f

consuming DIN a
s

well a
s ON. The

n
e
t

effect o
f

long bioassays is simply to cycle N among dissolved and particulate pools in a closed system

where there is tight coupling o
f N reactions. The only portion o
f

a bioassay that can b
e

compared to in situ metabolic rates is th
e

initial stage, when

th
e

pool o
f

labile ON may still

reflect in situ conditions (del Giorgio and Davis 2003). Bacteria can also modify dissolved

organic matter, making it resistant to further degradation (Ogawa e
t

a
l.

2001). Thus, long

incubation times under closed- bottle conditions likely reflect

th
e

accumulation o
f

bacterial

products rather than recalcitrance o
f

th
e

starting material. Not only is “dissolved” organic matter

operationally defined (size cut- offs o
f

filters), but

it
s lability is also operationally defined. The

apparent lability o
f DOM in bioassays depends o
n the length o
f

incubation and

th
e

initial

bioassay conditions, which include temperature, size, and composition o
f

bacterial inoculum, a
s

well a
s

th
e

abundance o
f

other inorganic o
r

growth- limiting nutrients (

d
e
l

Giorgio and Davis

2003). Enclosed bioassays tend to favor opportunistic microbes rather than growth o
f

a diverse

microbial community.

The incubation length does not necessarily equal length in terms o
f

nutrient cycling along a

lotic aquatic ecosystem ( e
.

g
.

Mulholland e
t

a
l. 2002b, Payn e
t

a
l. 2005). While streams and

rivers

a
c
t

a
s nutrient vectors, transformations, recycling, and uptake occur along their flowpath,

thereby influencing nutrient retention o
r

loss from

th
e

ecosystem. Further, aquatic systems may

b
e

managed to reduce N loading to downstream receiving waters (Peterson e
t

a
l.

2001).



4
.

Salinity

Salinity increases along

th
e

length o
f

the estuarine transit o
f

the waste stream. Changes in

salinity
a
re known to alter

th
e

reactivity and bioavailability o
f

DON and affect photochemical

reactions (McCallister e
t

a
l. 2005, See 2003, Minor e
t

a
l. 2006). In addition,

th
e

microbial

community (bacteria and phytoplankton) changes along

th
e

estuarine gradient (Crump e
t

a
l.

2004, Marshall e
t

a
l. 2005) affecting nutrient processing and

th
e

functioning o
f

ecosystems.

Salinity also influences

th
e

conformation o
f

macromolecules such a
s humic substances

(Baalousha e
t

a
l.

2006). These conformational changes can influence both th
e

abiotic and biotic

reactivity o
f

DOM.

5
.

Differentiating EON from organic nitrogen formed during bioassay

In any viable assay system, ON will b
e regenerated and

it
s bioavailability may b
e different

from that initially added to th
e

assay bottle. If a small change in th
e

concentration o
f

ON is

detected over

th
e

course o
f

th
e

test, it is possible that recalcitrant ON generated during

th
e

test

will mask consumption o
f

th
e

bioavailable ON being targeted b
y

th
e

test (Section 3 above

discusses potential N cycling during bioassays).

F
.

Conclusions

The proposed bioassay is unlikely to provide a good measure o
f

EON bioavailability once it

reaches

th
e

receiving waters and then moves through

th
e

estuarine system. This can b
e a

potentially significant problem in estuarine systems where N is limiting and microbial

populations capable o
f

directly o
r

indirectly using ON to fuel their growth reside. Future efforts

to design such a bioassay should incorporate

th
e

five criteria described above.

G
.

Research needs:

1
.

Compositional studies o
f EON

a
re needed to quantify and define

it
s various component

fractions and

th
e

potential lability o
f

those fractions. These should include EON derived

from different treatment technologies and different size fractions o
f

EON. These studies

would help determine whether bioavailable EON can b
e removed through alternative o
r

additional treatment o
r

using size-exclusion technologies such a
s membrane technologies.

2
.

Mass balance

a
ll N pools in time-course studies within incubation bottles to ascertain

whether assay results simply reflect recycling through various dissolved and particular N
pools over

th
e

course o
f

th
e

assays, and that endpoints

a
re just steady state equilibrium

conditions within assay bottles. This would include information o
n

th
e

composition o
f

th
e ON pool to determine if EON was truly refractory o
r

was being transformed in

assays. I
t
is likely that both long and short- term assays

a
re required to adequately assess

th
e

bioavailability o
f

EON.

3
.

Identify model organisms appropriate

f
o
r

different salinity ranges encountered in

proximate and ultimate receiving waters.

4
.

Quantify

th
e

abiotic effects o
f

salinity and light o
n

th
e

composition and bioavailability o
f

EON. T
o

accomplish this EON could b
e added to water o
f

various salinities and it
s

bioavailability assessed a
t

a range o
f

salinities in both

th
e

light and

th
e

dark. Studies

would ideally include changes in th
e composition o
f

th
e EON pool due to salinity and

production o
f

DIN o
r

labile DON from EON.

5
.

Examine th
e

bioavailability o
f

abiotically altered EON to appropriate test organisms.



6
.

Compare results from model bioassay systems with EON addition bioassays done using

natural water samples collected from different salinity regimes.

Using more sophisticated technologies, 15N- labeled EON could b
e synthesized and traced

directly in aquatic systems.

H
.
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